N,

t3 DATA &
% KNOWLEDGE
;ﬁ ENGINEERING

ELSEVIER Data & Knowledge Engineering 41 (2002) 1-27

www.elsevier.com/locate/datak

Principles of component-based design of intelligent agents

Frances M.T. Brazier, Catholijn M. Jonker, Jan Treur *

Department of Artificial Intelligence, Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam,
Netherlands

Received 24 July 2001; received in revised form 2 October 2001; accepted 24 October 2001

Abstract

Compositional multi-agent system design is a methodological perspective on multi-agent system design
based on the software engineering principles process and knowledge abstraction, compositionality, reuse,
specification and verification. This paper addresses these principles from a generic perspective in the context
of the compositional development method DESIRE. An overview is given of reusable generic models
(design patterns) for different types of agents, problem solving methods and tasks, and reasoning patterns.
Examples of supporting tools are described. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Component-based; Design; Agent; Reuse; Generic model

1. Introduction

The area of Component-Based Software Engineering is currently a well-developed area of
research within Software Engineering; e.g., [14,25,40,41]. More specific approaches to component-
based design of agents are often restricted to object-oriented implementation environments,
usually based on Java [2,22,34]. In these approaches, agents are often kept simple; rarely
knowledge-based architectures are covered, and if so, only with agents that are based on one
knowledge base [36]. Techniques for complex, knowledge-intensive tasks and domains developed
within Knowledge Engineering play no significant role. In contrast, this paper addresses the
design of component-based intelligent agents in the sense that: (1) the agents can be specified on

* Corresponding author. Tel.: +31-20-444-7763; fax: +31-20-444-7653.
E-mail addresses: frances@cs.vu.nl; http://www.cs.vu.nl (F.M.T. Brazier), jonker@cs.vu.nl; http://www.cs.vu.nl
(C.M. Jonker), treur@cs.vu.nl; http://www.cs.vu.nl (J. Treur).

0169-023X/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0169-023X(01)00058-1

2 F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27

a conceptual (design) level instead of an implementation level, and (2) specifications exploit
knowledge-based techniques as developed within Knowledge Engineering, enabling the design of
more complex agents, for example for knowledge-intensive applications.

The compositional multi-agent design method DESIRE (DEsign and Specification of Inter-
acting REasoning components) supports the design of component-based autonomous interactive
agents. Both the intra-agent functionality (i.e., the expertise required to perform the tasks for
which an agent is responsible in terms of the knowledge, and reasoning and acting capabilities)
and the inter-agent functionality (i.e., the expertise required to perform and guide co-ordination,
co-operation and other forms of social interaction in terms of knowledge, and reasoning and
acting capabilities) are explicitly modelled. DESIRE views the individual agents and the overall
system as compositional structures — hence all functionality is designed in terms of interacting,
compositionally structured components. In this paper an overview is given of the principles be-
hind this design method. DESIRE has been used in a number of application domains, e.g. [6—13].
Section 2 briefly discusses the process of design and the role of compositionality within this
process. Section 3 discusses the problem analysis and requirements elicitation process. Section 4
introduces the elements used to specify conceptual design and detailed design: process composi-
tion, knowledge composition and their relationships. Design rationale and verification is discussed
in Section 5. Section 6 discusses the notion of component-based generic models that form the basis
of reuse during design processes. The availability of a large variety of such generic models for
agents and tasks forms an important basis of the design method. In this section a number of these
models are presented. Section 7 briefly discusses the graphical software environment to support
the design process. Section 8 concludes the paper with a discussion.

2. The design process and types of compositionality

The design of a multi-agent system is an iterative process, which aims at the identification of
the parties involved (i.e., human agents, system agents, external worlds), and the processes, in
addition to the types of knowledge needed. Conceptual descriptions of specific processes and
knowledge are often first attained. Further explication of these conceptual design descriptions
results in detailed design descriptions, most often in iteration with conceptual design. During
the design of these models, partial prototype implementations may be used to analyse or verify
the resulting behaviour. On the basis of examination of these partial prototypes, new designs
and prototypes are generated and examined, and so on and so forth. This approach to evolu-
tionary development of systems is characteristic to the development of multi-agent systems in
DESIRE.

During a multi-agent system design process, DESIRE distinguishes the following descriptions
(see Fig. 1):

problem description,
conceptual design,
detailed design,
operational design,
design rationale.

F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27 3

Conceptual

— Design o

- i -

Detailed

Design <4—P

Design Rationale

Problem Description

- i L

Operational

— Design o

Fig. 1. Problem description, levels of design and design rationale.

The problem description includes the requirements imposed on the design. The rationale specifies
the choices made during design at each of the levels, and assumptions with respect to its use.

The relationship between the levels of design (conceptual, detailed, operational) is well defined
and structure-preserving. The conceptual design includes conceptual models for each individual
agent, the external world, the interaction between agents, and the interaction between agents and
the external world. The detailed design of a system, based on the conceptual design, specifies all
aspects of a system’s knowledge and behaviour. A detailed design provides sufficient detail for
operational design. Prototype implementations are automatically generated from the detailed
design.

There is no fixed sequence of design: depending on the specific situation, different types of
knowledge are available at different points during system design. The end result, the final multi-
agent system design, is specified by the system designer at the level of detailed design. In addition,
important assumptions and design decisions are specified in the design rationale. Alternative
design options together with argumentation are included. On the basis of verification during the
design process, properties of models can be documented with the related assumptions. The as-
sumptions define the limiting conditions under which the model will exhibit specific behaviour.

Compositionality is a general principle that refers to the use of components to structure a
design. Within the DESIRE method components are often complex compositional structures in
which a number of other, more specific components are grouped. During design different levels of
process abstraction are identified. Processes at each of these levels (except the lowest level) are
modelled as (process) components composed of components at the adjacent lower level.

Processes within a multi-agent system may be viewed as the result of interaction between more
specific processes. A complete multi-agent system may, for example, be seen to be one single
component responsible for the performance of the overall process. Within this one single com-
ponent a number of agent components and an external world may be distinguished, each re-
sponsible for a more specific process. Each agent component may, in turn, have a number of
internal components responsible for more specific parts of this process. These components may
themselves be composed, again entailing interaction between other more specific processes.

The ontology used to express the knowledge needed to reason about a specific domain may
also be seen as a single (knowledge) component. This knowledge structure may be composed of a

4 F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27

—> compositionality of knowledge

compositionality
of processes

Fig. 2. Compositionality of processes and compositionality of knowledge.

number of more specific knowledge structures which, in turn, may again be composed of other
even more specific knowledge structures.

As shown in Fig. 2 compositionality of processes and compositionality of knowledge are two sep-
arate, orthogonal dimensions. The compositional knowledge structures are referenced by compo-
sitional process structures, when needed.

Compositionality is a means to acquire information and process hiding within a model: by de-
fining processes and knowledge at different levels of abstraction, unnecessary details can be
hidden. Compositionality also makes it possible to integrate different types of components in one
agent. Components and groups of components can be easily included in new designs, supporting
reuse of components at all levels of design.

3. Problem description and requirements elicitation

Which techniques are used to acquire a problem description is not pre-defined. Techniques vary
in their applicability, depending on, for example, the situation, the task, the type of knowledge
on which the system developer wishes to focus. Acquisition of requirements to be imposed on
the system as part of the problem description is crucial. These requirements are part of the initial
problem definition, but may also evolve during the development of a system.

Requirements Engineering is a well-studied field of research. In recent years requirements en-
gineering for distributed and agent systems has been studied, e.g., [18-20,23,31]. At the level of the
multi-agent system, requirements are related to the dynamics of interaction and co-operation
patterns. At the level of individual agents, requirements are related to agent behaviour. Due to the
dynamic complexity, analysis and specification of such requirements is a difficult process.

Requirements can be expressed in an informal, semi-formal or formal manner. In the context
described above, the following is an informally expressed requirement for the dynamics of the
multi-agent system as a whole:

R2: Each service request must be followed by an adequate service proposal after a certain time
delay.

F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27 5

In a structured, semi-formal manner, this requirement can be expressed as follows:

if at some point in time

an agent A outputs: a service request, to an appropriate other agent B
then at a later point in time

agent B outputs: a proposal for the request, to agent A
and at a still later point in time

agent A outputs: proposal is accepted, to agent B

The following temporal formalisation is made:
V., t, A 3B
[holds(state(.#, t, output(A)), communication_from_to(request(r), A, B))
= [3t2>tl >t holds(state(.#, t1, output(B)),
communication_from_to(proposal_for(p, r), B, A))
A holds(state(.#, t2, output(B)),
communication_from_to(accepted_proposal_for(p, r), A, B))]]
The formal language used is comparable to situation calculus (e.g., compare [to the holds-
predicate), but with explicit variables for traces and time. The expression
holds(state(.#, t, output(A)), communication_from_to(request(r), A, B))
means that within trace .# at time point t a communication statement communica-
tion_from_to(request(r), A, B) is placed in the output interface of agent A. Here a trace is a se-
quence over time of three-valued information states of the system, including input and output
information states of all of the agents, and their environment. The time frame can be discrete, or a
finite variability assumption can be used. For further details on the use of this predicate logic
temporal language, see [23].
Besides requirements on the dynamics of the overall multi-agent system, also requirements can
be expressed on the behaviour of single agents. For example, an agent who is expected to ade-
quately handle service requests should satisfy the following behaviour requirements:

Al: If the agent B receives a request for a service from a client A
And the necessary information regarding this client is not available
Then agent B issues a request for this information to that client.

Requirements on the dynamics of a multi-agent system are at a higher process abstraction level
than the behaviour requirements on agents.

4. Conceptual design and detailed design

Conceptual and detailed designs consist of specifications of the following three types:

e process composition,
e knowledge composition,
o the relation between process composition and knowledge composition.

These three types of specifications are discussed in more detail below.

6 F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27
4.1. Process composition

Process composition identifies the relevant processes at different levels of (process) abstraction,
and describes how a process can be defined in terms of lower level processes. Depending on the
context in which a system is to be designed two different views can be taken: a task perspective,
and a multi-agent perspective. The task perspective refers to the view in which the processes
needed to perform an overall task first are identified. These processes (or sub-tasks) are then
delegated to appropriate agents and the external world, after which these agents and the external
world are designed. The multi-agent perspectiverefers to the view in which agents and an external
world are first identified and then the processes within each agent and within the external world.

4.1.1. Identification of processes at different levels of abstraction

Processes can be described at different levels of abstraction; for example, the processes for the
multi-agent system as a whole, processes within individual agents and the external world, pro-
cesses within task-related components of individual agents.

Modelling a process. The processes identified are modelled as components. For each process the
types of information used as input and resulting as output are identified and modelled as input and
output interfaces of the component.

Modelling process abstraction levels. The levels of process abstraction identified are modelled as
abstractionl/specialisation relations between components at adjacent levels of abstraction: compo-
nents may be composed of other components or they may be primitive. Primitive components may
be either reasoning components (for example based on a knowledge base), or, alternatively, com-
ponents capable of performing tasks such as calculation, information retrieval, optimisation, etc.

The identification of processes at different abstraction levels results in specification of com-
ponents that can be used as building blocks, and of a specification of the sub-component relation,
defining which components are a sub-component of a which other component. The distinction of
different process abstraction levels results in process hiding.

4.1.2. Composition

The way in which processes at one level of abstraction in a system are composed of processes at
the adjacent lower abstraction level in the same system is called composition. This composition of
processes is described not only by the component/sub-component relations, but in addition by the
(possibilities for) information exchange between processes (static view on the composition), and
task control knowledge used to control processes and information exchange (dynamic view on the
composition).

Information exchange. Information exchange defines which types of information can be
transferred between components and the information links by which this can be achieved. Within
each of the components private information links are defined to transfer information from one
component to another. In addition, mediating links are defined to transfer information from the
input interfaces of encompassing components to the input interfaces of the internal components,
and to transfer information from the output interfaces of the internal components to the output
interface of the encompassing components.

Task control knowledge. Components may be activated sequentially or they may be continually
capable of processing new input as soon as it arrives (awake). The same holds for information

F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27 7

links: information links may be explicitly activated or they may be awake. Task control knowledge
specifies under which conditions which components and information links are active (or made
awake). Evaluation criteria, expressed in terms of the evaluation of the results (success or failure),
provide a means to further guide processing.

Task control knowledge specifies when and how processes are to be performed and evaluated.
Goals of a process are defined by the rask control foci together with the extent to which they are to
be pursued. Evaluation of the success or failure of a process’s performance is specified by evaluation
criteria together with an extent. Processes may be performed in sequence or in parallel, some may
be continually ‘awake’, (e.g., able to react to new input as soon as it arrives), others may need to be
activated explicitly.

4.2. Knowledge composition

Knowledge composition identifies knowledge structures at different levels of (knowledge) ab-
straction, and describes how a knowledge structure can be defined in terms of lower level
knowledge structures. The knowledge abstraction levels may correspond to the process abstrac-
tion levels, but this is not often the case; often the matrix depicted in Fig. 2 shows an m to n
correspondence between processes and knowledge structures, with m,n > 1.

4.2.1. Identification of knowledge structures at different abstraction levels

The two main structures used as building blocks to model knowledge are: information types and
knowledge bases. These knowledge structures can be identified and described at different levels of
abstraction. At the higher levels details can be hidden. The resulting levels of knowledge ab-
straction can be distinguished for both information types and knowledge bases.

Information types. An information type defines an ontology (lexicon, vocabulary) to describe
objects or terms, their sorts, and the relations or functions that can be defined on these objects.
Information types are defined as signatures (sets of names for sorts, objects, functions, and re-
lations) for order-sorted predicate logic. Information types can be specified in graphical form, or
in formal textual form.

Knowledge bases. Knowledge bases use ontologies defined in information types. Relations
between information types and knowledge bases define precisely which information types are
used. The relationships between the concepts specified in the information types are defined by the
knowledge bases during detailed design.

4.2.2. Composition of knowledge structures

Information types can be composed of more specific information types, following the principle
of compositionality discussed above. Similarly, knowledge bases can be composed of more specific
knowledge bases. The compositional structure is based on the different levels of knowledge ab-
straction distinguished, and results in information and knowledge hiding.

4.3. Relation between process composition and knowledge composition

Each process in a process composition uses knowledge structures. Which knowledge structures
(information types and knowledge bases) are used for which processes is defined by the relation

8 F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27

between process composition and knowledge composition. The cells within the matrix depicted in
Fig. 2 define these relations.

5. Design rationale and compositional verification

The design rationale behind a design process describes the relevant properties of a system in
relation to the design requirements and the relevant assumptions. The initial requirements are
stated in the initial problem description, others originate during a design process, and are added to
the problem description. Important design decisions are made explicit, together with some of the
alternative choices that could have been made, and the arguments in favour of and against the
different options. At the operational level the design rationale includes decisions based on oper-
ational considerations, such as the choice to implement a parallel process on one or more machines,
depending on the available capacity. This information is of particular importance for verification.

Requirements imposed on multi-agent systems designed to perform complex and interactive
tasks are often requirements on the behaviour of the agents and the system. As in non-trivial
applications the dynamics of a multi-agent system and the control thereof are of importance, it is
vital to understand how system states change over time. In principle, a design specifies which
changes are possible and anticipated, and which behaviour is intended. To obtain an under-
standing of the behaviour of a compositional multi-agent system, its dynamics can be expressed
by means of the evolution of information states over time. If information states are defined at
different levels of process abstraction, behaviour can be described at different levels of process
abstraction as well.

The purpose of verification is to prove that, under a certain set of assumptions, a system adheres
to a certain set of properties, for example the design requirements. A compositional multi-agent
system verification method takes the process abstraction levels and the related compositional
structure into account. In [6,17,28], a compositional verification method is described and applied
to diagnostic reasoning, co-operative information gathering agents, and negotiating agents, re-
spectively. The verification process is done by a mathematical proof (i.e., a proof in the form to
which mathematicians are accustomed) that the specification of the system, together with the
assumptions, imply the properties that a system needs to fulfil. The requirements are formulated
formally in terms of temporal semantics. During the verification process the requirements of the
system as a whole are derived from properties of agents (one process abstraction level lower) and
these agent properties, in turn, are derived from properties of the agent components (again one
abstraction level lower).

Primitive components (those components that are not composed of others) can be verified using
more traditional verification methods for knowledge-based systems (if they are specified by means
of a knowledge base), or other verification methods tuned to the type of specification used.
Verification of a (composed) component at a given process abstraction level is done using:

e properties of the sub-components it embeds,

e a specification of the process composition relation,

e environmental properties of the component, (depending on the rest of the system, including the
world).

F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27 9

This introduces compositionality in the verification process: given a set of environmental prop-
erties, the proof that a certain component adheres to a set of behavioural properties depends on
the (assumed) properties of its sub-components, and the composition relation: properties of the
interactions between those sub-components, and the manner in which they are controlled. The
assumptions under which the component functions properly, are the properties to be proven for
its sub-components. This implies that properties at different levels of process abstraction play their
own role in the verification process.
Compositional verification has the following advantages; see also [1,24,28]:

e Reuse of verification results is supported (refining an existing verified compositional model by
further decomposition, leads to verification of the refined system in which the verification struc-
ture of the original system can be reused).

e Process hiding limits the complexity of the verification per abstraction level.

A condition to apply a compositional verification method described above is the availability of
an explicit specification of how the system description at an abstraction level is composed from the
descriptions at the adjacent lower abstraction level.

The formalised properties and their logical relations, resulting from a compositional verifica-
tion process, provide a more general insight in the relations between different forms of behaviour.
For example, in [17] different properties of diagnostic reasoning and their logical relations have
been formalised in this manner, and in [28] the same has been done for pro-activeness and re-
activeness properties for co-operative information gathering agents. In [6] termination and suc-
cessfulness properties for negotiation processes are analysed.

6. Reusability and generic models

The iterative process of modelling processes and knowledge is often resource-consuming. To
limit the time and expertise required to design a system a development method should reuse as
many elements as possible. Within a compositional development method, generic agent models
and task models, and existing knowledge structures (ontologies and knowledge bases) may be
used for this purpose. Which models are used, depends on the problem description: existing
models are examined, discussed, rejected, modified, refined and/or instantiated in the context of
the problem at hand. Initial abstract descriptions of agents and tasks can be used to generate a
variety of more specific agent and task descriptions through refinement and composition (for
which existing models can be employed as well).

Agent models and task models can be generic in two senses: with respect to the processes
(abstracting from the processes at the lower levels of process abstraction), and with respect to the
knowledge (abstracting from lower levels of knowledge abstraction, e.g., a specific domain of
application). Often different levels of genericity of a model may be distinguished. A refinement of a
generic model to lower process abstraction levels, resulting in a more specific model is called a
specialisation. A refinement of a generic model to lower knowledge abstraction levels, e.g., to
model a specific domain of application, is called an instantiation. Compositional system design
focuses on both aspects of genericity, often starting with a generic agent model. This model may

10 F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27

be modified or refined by specialisation and instantiation. The process of specialisation replaces a
single ‘empty’ component of a generic model by a composed component (consisting of a number
of sub-components). The process of instantiation takes a component of a generic model and fills it
with (domain) specific information types and knowledge bases. During these refinement processes
components can also be deleted or added. The compositional structure of the design is the basis
for performing such operations on a design.

The applicability of a generic agent model depends on the basic characteristics of an agent in
the problem description. The applicability of a generic task model for agent-specific tasks depends
not only on the type of task involved, but also the way in which the task is to be approached. Since
the availability of a variety of generic models is crucial for the quality of support that can be
offered during a design process, in this section a number of generic models available in DESIRE
are discussed.

6.1. Generic agent models

Characteristics of automated agents vary significantly depending on the purposes and tasks for
which they have been designed. Agents may or may not, for example, be capable of communi-
cating with other agents. A fully reactive agent may only be capable of reacting to incoming
information from the external world. A fully cognitive and social agent, in comparison, may be
capable of planning, monitoring and effectuating co-operation with other agents. Which agent
models are most applicable to a given situation (possibly in combination) is determined during
system design. Generic models for weak agents, co-operative agents, BDI-agents and deliberative
normative agents are briefly described below.

6.1.1. Generic model for the weak agent notion:. GAM

The Generic Agent Model (GAM) depicted in Fig. 3 supports the notion of a weak agent, for
which autonomy, pro-activeness, reactiveness and social abilities are distinguished as characteris-
tics; cf. [42]. This type of agent:

e reasons about its own processes (supporting autonomy and pro-activeness),

¢ interacts with and maintains information about other agents (supporting social abilities, and
reactiveness and pro-activeness with respect to other agents),

¢ interacts with and maintains information about the external world (supporting reactiveness and
pro-activeness with respect to the external world).

The six components are: Own Process Control (OPC), Maintenance of World Information
(MWI), World Interaction Management (WIM), Maintenance of Agent Information (MAI),
Agent Interaction Management (AIM), and Agent Specific Tasks (AST). The processes involved in
controlling an agent (e.g., determining, monitoring and evaluating its own goals and plans) but also
the processes of maintaining a self model are the task of the component Own Process Control. The
processes involved in managing communication with other agents are the task of the component
Agent Interaction Management. Maintaining knowledge of other agents’ abilities and knowledge
is the task of the component Maintenance of Agent Information. Comparably, the processes in-
volved in managing interaction with the external (material) world are the task of the component

F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27 11

(N\

(Agent task control)

world info to opc
agent info to opc

Process

Control own

own process
— _ process | info to
own process info to wim infoto | mai
F i | mwi . .
own process info to aim info to be communicated

commur .
agent Maintenance 1
communicatd o Interaction infg of Ager‘1t
info — 1. Management [= Information
<
agent info to aim communicated world info
world info to aim
observations and actions
observed >
| agent —
observatipny info .
results World Maintenance — |
to wim I Interaction of World
Information
g observed
world info to wim world info
agent info to wim N
observed | [communicated
info to ast| | info to ast Age‘n-t
Specific
Task
action and observation info from ast - J
communication info from ast
G J

Fig. 3. Generic model for the weak agent notion.

World Interaction Management. Maintaining knowledge of the external (material) world is the
task of the component Maintenance of World Information. The specific task for which an
agent is designed (for example: design, diagnosis), is modelled in the component Agent Spe-
cific Task. Existing (generic) task models may be used to further specialise this component; see
Section 6.2.

6.1.2. Generic co-operative agent model: GCAM

If an agent explicitly reasons about co-operation with other agents, the generic model for a
weak agent depicted in Fig. 3 can be extended to include an additional component for co-oper-
ation management. This component, the Co-operation Management component includes the
knowledge needed to acquire co-operation, as shown in Fig. 4.

To achieve co-operation between a number of agents requires specific plans devised specifically
for this purpose. These plans are the result of reasoning by the component Generate Project. This
component identifies commitments needed for all agents involved, and modifies existing plans
when necessary.

12 F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27

e

Cooperation Management - task control

monitoring_ info

incoming_project_info

required_ project

info_on_other_agents

N

Generate
Project

own_generated project

Monitor
Project

required_info_on_other_agents

required_monitoring_info

monitoring_info_to_outpu

p——

commitments_to_output

J

Fig. 4. Refinement of co-operation management in the generic co-operative agent model GCAM.

/

\

¢

Generate Project - task control

)

recipe_ to

be repaired »
recipe_to
be_prepared

info_on_ othe’

agents_to PPC

Prepare
Project

Commitments

prepared_project

-

info_on_participants

needed_info_on_other agents

Generate
and Modifye
Project Recipe

info_for agents

/

Fig. 5. Composition of the component Generate Project in GCAM.

The composition of the component Generate Project in Fig. 5 includes the two components
Prepare Project Commitments (for composing an initial project team) and Generate and Modify
Project Recipe (to determine a detailed schedule for the project, in interaction with the project
team members) for these two purposes. Execution of a plan, also part of co-operation, is moni-
tored by each individual agent involved. This is the task of the component Monitor Project. The
two sub-components of this component depicted in Fig. 6, Assess Viability (to determine the
feasibility of a plan) and Determine Consequences (consequences of changes for the agents in-
volved). The generic model of a cooperative agent is based on the approach put forward in [26].
For a more detailed explanation of the composition of processes, the knowledge involved and the

interaction between components, see [9].

F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27 13

4 ())

Monitor Project - task control

assessment_info_to_output

Determine
Consequences

Assess
Viability

-

project_info assessment_info_to_DC info_on_project_changes

.)

Fig. 6. Composition of the component Monitor Project in GCAM.

6.1.3. Generic model of a BDI-agent: GBDIM

An agent that bases its control of its own processes on its own beliefs, desires, commitments
and intentions is called a BDI-agent. The BDI-agent model is a refinement of the model for a
weak agent GAM. The refinement of own process control in the Generic Model for BDI-agents,
GBDIM, is shown in Fig. 7.

Beliefs, desires, and intentions together with commitments, are determined in separate com-
ponents with interaction between all three. A distinction is made between: (1) intentions and
commitments with respect to goals, and (2) intentions and commitments with respect to plans.
This distinction involves different types of knowledge and, as a result, is modelled by two different
components as depicted in Fig. 8.

Please note that the influence of intentions and commitments with respect to goals directly in-
fluences intentions and commitments with respect to plans, and vice versa. For more detail see [8].

6.1.4. Generic model of a deliberative normative agent: GDNM

In many agent societies norms are assumed to play a role. It is claimed that not only following
norms, but also the possibility of ‘intelligent’ norm violation are of importance. Principles for
agents that are able to behave deliberatively on the basis of explicitly represented norms are
identified and incorporated in a generic model for a deliberative normative agent. Using this agent
model, norms can be communicated, adopted and used as meta-goals on the agent’s own pro-
cesses. As such they have impact on deliberation about goal generation, goal selection, plan
generation and plan selection.

This generic model for an agent that uses norms in its deliberative behaviour is a refinement of
the generic agent model GAM. A new component is included for society information, the com-
ponent Maintenance of Society Information (MSI) at the top level and the component Own
Process Control is refined as shown in Fig. 9. For more details, see [15].

14 F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27

(own process control task control)

transfer_desire_info_for_bd

belief @ransferfbelieff desire
determination info_for_dd determination

transfer_world_and
agent_info

]
transfer_desire_info_for_id
transfer_belief_info
.
o B
intention and
commitment
determination transfer_committed_goal_
and_plan_info
transfer_belief_info_for_id
transfer_ic_info_for_bd
\§ J

Fig. 7. Refinement of the component Own Process Control in the generic BDI-agent model GBDIM.

r
(intention and commitment determination task control) j

transfer_inachievable_goals

transfer_
committed_goals

plan

goal
determination

determination

import_beliet_and

on_L _and_ export_comm_plans
desire_info_to_pd

-

export_comm_goals

import_bel;ief_and_desire_info_to_pd

Fig. 8. Refinement of the component Intention and Commitment determination.

6.2. Generic models of problem solving methods and tasks

The specific tasks for which agents are designed vary significantly. Likewise the variety of tasks
for which generic models based on specific problem solving methods have been developed is
wide: diagnosis, design, process control, planning and scheduling are examples of tasks for which

F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27 15

Agent

intended communication

Own
Process
Control

believed society information

intended actions

believed world information

believed agent information

communicated
world
information

communicated communicated
sodiety i agent N
it Mamten_ance Infoion Maintenance
of Society [[] of Agent]
L1 Information [Ll information Il

observed society information

Maintenance
of World
Information

observed world information

observed agent information

Agent World
)) Interaction Interaction
incoming communicati Management Management
initiated actions and observations
incoming observation results autgoing communication
\ J

Fig. 9. A generic model for a deliberative normative agent: GDNM.

generic models are available. In this section compositional generic task models (developed in
DESIRE) for the first three types of tasks are briefly described. These task models can be com-
bined with any of the agent models described above: they can be used to specialise the agent
specific task component.

6.2.1. A generic model for diagnostic tasks: GDIM

Tasks specifically related to diagnosis are included in the generic task model of diagnosis (for a
top level composition, see Fig. 10). This generic model (the Generic DIagnosis Model GDIM) is
based on determination and validation of hypotheses. It subsumes both causal and anti-causal
diagnostic reasoning. Application of this generic model for both types of diagnosis is discussed in
[12].

The component Hypothesis Determination is used to dynamically focus on certain hypotheses
during the process. Hypothesis Validation includes determination of the observations (Observa-
tion Determination) needed to validate a hypothesis (which are transferred to the external world
to be performed), and evaluation of the results of observation with respect to the hypothesis in
focus (Hypothesis Evaluation) (see also Fig. 11).

6.2.2. A generic model for design tasks: GDEM
The compositional Generic DEsign Model (GDEM; see Fig. 12) [10] is based on a logical
analysis of design processes and on analyses of applications, including elevator configuration and

16 F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27

C diagnostic reasoning system task control)

focus info

required
observation

hypothesis

hypothesis

determination hyp target info

validation

hypotheses

servation inf
observation info assessments

symptoms presence

Fig. 10. Generic task model of diagnosis: GDIM.

C hypothesis validation task control)

to be observed

observation
determination

hypothesis
evaluation

focus hyp to OD

eval info '

obs info
to output

obs target
info to HE

focus hyp to HE

obs info to HE

performed obs

Fig. 11. Composition of the component Hypothesis Validation in GDIM.

design of environmental measures [13]. In this model Requirement Qualification Sets Manip-
ulation (component RQS Manipulation or RQSM), Design Object Description Manipulation
(component DOD Manipulation or DODM) and Design Process Co-ordination (DPC) are

F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27 17

(Design task control)

Design

Proc'ess' :I design process evaluation report
Co-ordination

design process objective description»

F

overall design strategy to RQSM

overall design

strategy to DODM
DODM process
evaluation report

DODM
RQSM process results
RQS evaluation report
Manipulation tintermediate RQS informatitg Manipulation
DOD
RQSM .
results — P 5 g
o O
RQS information g o
intermediate DQD information g
=
intermediate DODM results
\§ J

Fig. 12. Composition of the design task: GDEM.

distinguished as three separate interacting processes. The model provides a generic structure
which can be refined for specific design tasks in different domains of application.

An initial design problem statement is expressed as a set of initial requirements and requirement
qualifications. Requirements impose conditions and restrictions on the structure, functionality and
behaviour of the design object for which a structural description is to be generated during design.
Qualifications of requirements are qualitative expressions of the extent to which (individual or
groups of) requirements are considered hard or preferred, either in isolation or in relation to other
(individual or groups of) requirements. At any one point in time during design, the design process
focuses on a specific subset of the set of requirements. This subset of requirements plays a central
role; the design process is (temporarily) committed to the current requirement qualification set:
the aim of generating a design object description is to satisfy these requirements.

During design the subsets of the set of requirements considered may change as may the re-
quirements themselves. The same holds for design object descriptions representing the structure of
the object to be designed.

The component Requirement Qualification Set Manipulation has four sub-components:

e RQS modification: the current requirement qualification set is analysed, proposals for modifica-
tion are generated, compared and the most promising (according to some measure) selected,

o deductive RQS refinement: the current requirement qualification set is deductively refined by
means of the theory of requirement qualification sets,

e current RQS maintenance: the current requirement qualification set is stored and maintained,
RQSM history maintenance: the history of requirement qualification sets modification is stored
and maintained.

18 F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27
The component Manipulation of Design Object Descriptions also has four sub-components:

e DOD modification: the current design object description is analysed in relation to the current
requirement set, proposals for modification are generated, compared and the most promising
(according to some measure) selected,

o deductive DOD refinement: the current design object description is deductively refined by means
of the theory of design object descriptions,

e current DOD maintenance: the current design object description is stored and maintained,

e DODM history maintenance: the history of design object descriptions modification is stored and
maintained.

More detail on this model can be found in [10]. In [11] the different levels of strategic reasoning
in the model are described in more detail, including the component Design Process Co-ordination
for the highest level of strategic reasoning.

6.2.3. A generic model for process control tasks: GPCM

Process control involves three sub-processes: process analysis, simulation of world processes
and plan determination. These sub-processes are represented explicitly at the top-level of the
Generic Process Control Model (GPCM) depicted in Fig. 13.

Process Analysis involves evaluation of the process as a whole and determination of the ob-
servations to be performed in the external world. This is depicted below in Fig. 14 in the com-
position of the component Process Analysis.

Note that two types of observations can be performed: incidental observations that return an
observation result for only the current point in time, and continuous observations that continuously
return all updated observation results as soon as changes in the world occur.

C process control task: task control)

selected actions to process analysis

process plan

evaluation information

analysis determination sel¢cted actions

world obsfinfo

finalisation
selected observations

spy| points

proposed actions

simulated
current world

. . world processes
state for simulation

simulation information

Fig. 13. Process composition of process control: GPCM.

F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27 19

(process analysis task control)

performed world obs

selected
observations

process determine

plaps for eval plans for determ obs

evaluation observations

world and eval info
simulation
obs info — :
for evaluation evaluation information >
b J

Fig. 14. Process composition of process analysis: information links.

6.3. Generic models of reasoning patterns

An example of a generic model for a specific reasoning pattern, is a model for reasoning
patterns in which assumptions are dynamically added and retracted (sometimes called hypo-
thetical reasoning), is discussed. Reasoning with and about assumptions entails deciding about a
set of assumptions to be assumed for a while (reasoning about assumptions), and deriving which
facts are logically implied by this set of assumptions (reasoning with assumptions). The derived
facts may be evaluated; based on this evaluation some of the assumptions may be rejected and/or
a new set of assumptions may be chosen (reasoning about assumptions). For example, if an as-
sumption is chosen, and the facts derived from this assumption contradict information obtained
from a different source (e.g., by observation), the assumption may be rejected and the converse
may be assumed.

Reasoning with and about assumptions is a reflective reasoning method. It proceeds by the
following alternation of object level and meta-level reasoning, and upward and downward re-
flection:

inspecting the information currently available (epistemic upward reflection),

determining a set of assumptions (meta-level reasoning),

assuming this set of assumptions for a while (downward reflection of assumptions),

deriving which facts follow from this assumed information (in the object level reasoning),
inspecting the information currently available (epistemic upward reflection),

evaluating the derived facts (meta-level reasoning),

deciding to reject some of the assumptions and/or to choose a new set of assumptions based on
this evaluation (meta-level reasoning),

and so on.
As an example, if an assumption ‘a is true’ is chosen, and the facts derived from this as-
sumption contradict information that is obtained from a different source, the assumption ‘a is

20 F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27

(system task control)

assessments

assumption assumption

hypotheses

determination evaluation

assumptions

required observations

epistemic info

observation

external

result

predictions world

prediction

observation results

Fig. 15. A generic model for reasoning with and about assumptions: GARM.

true’ may be rejected and the converse ‘a is false” may be assumed. This reasoning pattern also
occurs in diagnostic reasoning based on causal knowledge.

The generic model for reasoning with and about assumptions consists of four primitive com-
ponents: External world, Observation Results Prediction, Assumption Determination, Assump-
tion Evaluation (see Fig. 15). The first two of these components represent the object level, the last
two the meta-level. The component Observation Result Prediction reasons with assumptions, the
two components Assumption Determination and Assumption Evaluation reason about assump-
tions. Note that this generic reasoning model is applied, among others, in the generic model for
diagnosis GDIM presented in Section 6.2.1. However, the model has other types of application as
well. For example, on the basis of this generic reasoning model, more specialised models have
been designed for:

e a generic model for default reasoning with explicit strategic knowledge on resolution of con-
flicting defaults (GDRM),

e a generic model for reasoning on the basis of a Closed World Assumption (GCWARM), with
possibilities for context-sensitive informed and scoped variants of the Closed World Assumption.

7. Supporting software environment

The compositional design method DESIRE is supported by a software environment. The
DESIRE software environment includes a number of facilities. Graphical design tools support
specification of conceptual and detailed design of processes and knowledge at different abstraction
levels. A detailed design in DESIRE provides enough detail to be able to develop an operational
implementation automatically in any desired environment. An implementation generator sup-
ports prototype generation of both partially and fully specified models. The code generated by the

F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27

_File] Belection /] Edit /] Settings /]

" actions_and ohservations
" @7 ™ >

agent external world

ohservation_results

Saved primreac2.dtb

1d

Fig. 16. Graphical design tool for process composition.

Component: agent Defined In: TopLevel
Task Control Foci: : E Criteria:
Focus Name: . O Name:
Initial Task Control Focus: Initial Extent: A [afi=p

Public Levels: Z ady) Remove
Level: 1 Next) iz)

Object Input Information Typ e: observation_resull_info
Object Qutput Information Typ e: action_info

Initial Kemel Information of Object Level: 1

f

Kind: W Lomposed

Body Kind: Reasoning ﬁliernativel!e%i:- ;

Addifional Information Typ e:

Help) Dismiss)

Fig. 17. Component editing window for a component.

22 F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27

implementation generator can be executed in an execution environment. Screenshots of interac-
tion with the tools illustrate the support the tools provide. Fig. 16 shows the result of the creation
(by a mouse click, and then filling the names) of two components Agent and the External World
and two links between the components. The precise specifications of these components and links
are created in interaction with the graphical editors to make the drawing, as shown in Figs. 17 and
18. Moreover, if within one of the components a compositional structure using subcomponents is

Link: actions_and_ohservationg Defined In: TopLevel

Source: Destination:
Component: agent Component: external world
Lewvel: 1 Level: 1
Kind: _/| [Object Kind: _/|[Qbject
Information type: action_info Information type:action_info

Links: [Default Specified

Fig. 18. Editor for information links.

Information type: temperatures
Defined In: ToplLevel

Information type References

New Sorts Existing Sorts
TEMP_VALUE

Relations

Help Dismiss |

Fig. 19. Editor for information types.

F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27 23

required, by a mouse click on this component a new drawing area can be opened, where again
components can be introduced (zoom in).

Fig. 17 depicts the initial specification of the Agent component in which, for example, the input
and output information types are defined. Fig. 18 shows the specification of an information link
between the External World and the Agent. For example, the type of information to be ex-
changed, namely action_info, is specified in this window. Fig. 19 shows how information types are
defined. The example information type temperatures requires a new sort TEMP_VALUE.

8. Discussion

The basic principles behind compositional multi-agent system design described in this paper
(process and knowledge abstraction, compositionality, reusability, formal semantics, and formal
evaluation) are principles generally acknowledged to be of importance in both software engi-
neering and knowledge engineering. The operationalisation of these principles within a compo-
sitional development method for multi-agent systems is, however, a distinguishing element. Such a
method can be supported by a (graphical) software environment in which all three levels of design
are supported: from conceptual design to implementation. Libraries of both generic models and
instantiated components, of which a few have been highlighted in this paper, support system
designers at all levels of design. Generic agent models, generic task models and generic models of
reasoning patterns help structure the process of system design. Formal semantics provide a basis
for methods for verification — an essential part of such a method.

A number of approaches to conceptual-level specification of multi-agent systems have been
recently proposed. On the one hand, general-purpose formal specification languages stemming
from Software Engineering are applied to the specification of multi-agent systems (e.g., [33,38] for
approaches using Z, resp. Z and CSP). A compositional development method such as DESIRE
is committed to well-structured compositional designs that can be specified at a higher level of
conceptualisation than in Z or VDM and, in particular, allows for specification in terms of
knowledge bases, which especially for applications in information-intensive domains is an ad-
vantage. Moreover, designs can be implemented automatically using automated prototype gen-
erators. In [32] an approach to the composition of reactive system components is described.
Specification of components is done on the basis of temporal logic. Two differences with our ap-
proach are the following. First, their approach is limited to reactive components. In our approach
components are allowed to be non-reactive as well. Another difference is that in their case speci-
fication of the type of the composition of components is limited. In our case the task control
specification forms the part of the composition specification where the dynamics of the composition
is defined in a tailored manner, using temporal task control rules. This enables to specify, for each
composition, precisely the type of composition that is required. This is also a difference with [33,38].

On the other hand, new development methods for the specification of multi-agent systems have
been proposed. These methods often commit to a specific agent architecture. For instance, [30]
describe a language on the one hand based on the BDI agent architecture [37], and on the other
hand based on object-oriented design methods.

In [40] an agent is constructed from components using a central message board within the agent
which manages the interaction between the agent’s components and integrates the activity within

24 F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27

the agent. Our approach is more general in the sense that a component-based architecture of an
agent (e.g., the model GAM) need not commit to such a central message-board; if desired, it is one
of the architectural possibilities. Moreover, components within DESIRE are more self-contained
in the sense that they include knowledge bases and relate to specific inference procedures and
settings. In contrast, in [40] components are quite heterogeneous; for example, a component can
be just a knowledge base, which only gets its dynamic semantics if it is processed by another
component. Another difference is that in [40] components are specified as a type of logic pro-
grams. It is not clear how declarative and/or procedural semantics of these programs are defined.
For example, they allow component replacement as one of the steps in dynamics. This suggests
dynamic semantics that are on the programming level; how to define such semantics on a con-
ceptual level is far from trivial. In our approach semantics is defined on a conceptual design level
based on traces of compositional states.

The Concurrent MetateM framework [21] is another modelling framework for multi-agent
systems. A comparison is discussed for the structure of agents, inter-agent communication and
meta-level reasoning (for a more extensive comparison, see [35]).

For the structure of agents, in DESIRE, the knowledge structures that are used in the
knowledge bases and for the input and output interfaces of components are defined in terms of
information types, in which sort hierarchies can be defined. Signatures define sets of ground
atoms. An assignment of truth values frue, false or unknown to atoms is called an information
state. Every primitive component has an internal information state, and all input and output
interfaces have information states. Information states evolve over time. Atoms are persistent in
the sense that an atom in a certain information state is assigned to the same truth value as in the
previous information state, unless its truth value has changed because of updating an information
link.

Concurrent MetateM does not have information types, there is no predefined set of atoms and
there are no sorts. The input and output interfaces of an object consist only of the names of
predicates. Two valued logic is used with a closed world assumption, thus an information state is
defined by the set of atoms that are true.

In a DESIRE specification of a multi-agent system, the agents are (usually) subcomponents of
the top-level component that represents the whole (multi-agent) system, together with one or more
components that represent the rest of the environment. A component that represents an agent can
be a composed component: an agent task hierarchy is mapped into a hierarchy of components. All
(sub-)components (and information links) have their own timescale.

In a Concurrent MetateM model, agents are modelled as objects that have no further structure:
all its tasks are modelled with one set of rules. Every object has its own timescale.

The communication between agents in DESIRE is defined by the information links between
them: communication is based on point-to-point or broadcast message passing. Communication
between agents in Concurrent MetateM is done by broadcast message passing. When an object
sends a message, it can be received by all other objects. On top of this, both multi-cast and point-
to-point message passing can be defined.

In DESIRE, meta-reasoning is modelled by using separate components for the object and the
meta-level. For example, one component can reason about the reasoning process and information
state of another component. Two types of interaction between object- and meta-level are dis-
tinguished: upward reflection (from object- to meta-level) and downward reflection (from meta- to

F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27 25

object-level). The knowledge structures used for meta-level reasoning are defined in terms of in-
formation types, standard meta-information type can automatically be generated.

For meta-reasoning in Concurrent MetateM, the logic MML has been developed. In MML, the
domain over which terms range has been extended to incorporate the names of object-level for-
mulae. Execution of temporal formulae can be controlled by executing them by a meta-inter-
preter. These meta-facilities have not been implemented yet.

The compositional approach to agent design in this paper has some aspects in common with
object oriented design methods; e.g., [5,16,39]. However, there are differences as well. Examples of
approaches to object-oriented agent specifications can be found in [4,29]. A first interesting point
of discussion is to what the difference is between agents and objects. Some tend to classify agents
as different from objects. For example, [27] compare objects with agents on the dimension of
autonomy in the following way:

An object encapsulates some state, and has some control over this state in that it can only be
accessed or modified via the methods that the object provides. Agents encapsulate state in just
the same way. However, we also think of agents as encapsulating behaviour, in addition to
state. An object does not encapsulate behaviour: it has no control over the execution of
methods — if an object x invokes a method m on an object y, then y has no control over
whether m is executed or not — it just is. In this sense, object y is not autonomous, as it has
no control over its own actions. In contrast, we think of an agent as having exactly this kind
of control over what actions it performs. Because of this distinction, we do not think of agents
as invoking methods (actions) on agents — rather, we tend to think of them requesting actions
to be performed. The decision about whether to act upon the request lies with the recipient.

Some others consider agents as a specific type of objects that are able to decide by themselves
whether or not they execute a method (objects that can say ‘no’), and that can initiate action
(objects that can say ‘go’).

A difference between the compositional design method DESIRE and object-oriented design
methods in representation of basic functionality is that within DESIRE declarative, knowledge-
based specification forms are used, whereas method specifications (which usually have a more
procedural style of specification) are used in object-oriented design. Another difference is that
within DESIRE the composition relation is defined in a more specific manner: the static aspects by
information links, and the dynamic aspects by (temporal) task control knowledge, according to
a pre-specified format. A similarity is the (re)use of generic structures: generic models in DESIRE,
and patterns (cf. [3,22]) in object-oriented design methods, although their functionality and
compositionality are specified in different manners, as discussed above.

References

[1] M. Abadi, L. Lamport, Composing specifications, ACM Transactions on Programming Languages and Systems 15
(1) (1993) 73-132.

[2] O. Akihik, N. Yasuo, H. Yutaka, H. Masaonri, H. Shinichi, Plangent: an approach to making mobile agents
intelligent, IEEE Internet Computing 1 (2) (1997).

[3] C. Alexander, A Pattern Language, Oxford University Press, Oxford, 1977.

26 F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27

[4] Y. Aridor, D.B. Lange, Agent design patterns: elements of agent application design, in: Proceedings of the Second
Annual Conference on Autonomous Agents, Agents’98, ACM Press, New York, 1998, pp. 108-115.

[5] G. Booch, Object-Oriented Analysis and Design, second ed., Addison-Wesley, Reading, MA, 1994.

[6] F.M.T. Brazier, F. Cornelissen, R. Gustavsson, C.M. Jonker, O. Lindeberg, B. Polak, J. Treur, Compositional
Design and Verification of a Multi-Agent System for One-to-Many Negotiation, in: Proceedings of the Third
International Conference on Multi-Agent Systems, ICMAS’98, IEEE Computer Society Press, Silver Spring, MD,
1998, pp. 49-56.

[7]1 F.M.T. Brazier, B. Dunin-Keplicz, N.R. Jennings, J. Treur, V. Lesser, Formal specification of multi-agent systems:
a real-world case, in: Proceedings of the First International Conference on Multi-Agent Systems, ICMAS’95, MIT
Press, Cambridge, MA, 1995, pp. 25-32;

Extended version in: M. Huhns, M. Singh (Eds.), Formal Methods in Cooperative Information Systems: Multi-
Agent Systems, International Journal of Cooperative Information Systems 6 (1997) 67-94 (special issue).

[8] F.M.T. Brazier, B. Dunin-Keplicz, J. Treur, L.C. Verbrugge, Modelling the internal behaviour of BDI-agents, in:
J.-J.Ch. Meyer, P.Y. Schobbes (Eds.), Formal Models of Agents (Selected papers from final ModelAge Workshop),
Lecture Notes in Al, vol. 1760, Springer, Berlin, 1999, pp. 36-56.

[9] F.M.T. Brazier, C.M. Jonker, J. Treur, Formalisation of a cooperation model based on joint intentions, in: J.P.
Miiller, M.J. Wooldridge, N.R. Jennings (Eds.), Intelligent Agents III (Proceedings of the Third International
Workshop on Agent Theories, Architectures and Languages, ATAL’96), Lecture Notes in Al, vol. 1193, Springer,
Berlin, 1997, pp. 141-155;

Extended version in:, International Journal of Cooperative Information Systems 9 (2000) 171-207.

[10] F.M.T. Brazier, P.H.G. van Langen, Zs. Ruttkay, J. Treur, On formal specification of design tasks, in: J.S. Gero,
F. Sudweeks (Eds.), Artificial Intelligence in Design '94, Kluwer Academic Publishers, Dordrecht, 1994, pp. 535-
552.

[11] F.M.T. Brazier, P.H.G. van Langen, J. Treur, Strategic knowledge in compositional design models, in: J.S. Gero,
F. Sudweeks (Eds.), Proceedings of the Fifth International Conference on Artificial Intelligence in Design, AID’98,
Kluwer Academic Publishers, Dordrecht, 1998, pp. 129-147.

[12] F.M.T. Brazier, J. Treur, N.J.E. Wijngaards, The acquisition of a shared task model, in: N. Shadbolt, K. O’Hara,
G. Schreiber (Eds.), Advances in Knowledge Acquisition, Proceedings of the 9th European Knowledge Acquisition
Workshop, EKAW’96, Lecture Notes in Al, vol. 1076, Springer, Berlin, 1996, pp. 278-289.

[13] F.M.T. Brazier, J. Treur, N.J.E. Wijngaards, Modelling interaction with experts: the role of a shared task model,
in: W. Wahlster (Ed.), Proceedings of the 12th European Conference on Al, ECAI’96, Wiley, Chichester, 1996,
pp. 241-245.

[14] A.W. Brown (Ed.), Component-Based Software Engineering, IEEE Computer Society Press, Silver Spring, MD,
1996.

[15] C. Castelfranchi, F. Dignum, C.M. Jonker, J. Treur, Deliberative normative agents: principles and architecture,
in: N.R. Jennings, Y. Lesperance (Eds.), Intelligent Agents VI. Proceedings of the Sixth International Workshop
on Agent Theories, Architectures and Languages, ATAL’99, Lecture Notes in Al, vol. 1757, Springer, Berlin, 2000,
pp. 364-378.

[16] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, P. Jeremaes, Object-Oriented Development:
The FUSION method, Prentice-Hall International, Hempel Hempstead, England, 1994.

[17] F. Cornelissen, C.M. Jonker, J. Treur, Compositional verification of knowledge-based systems: a case study for
diagnostic reasoning, in: E. Plaza, R. Benjamins (Eds.), Knowledge Acquisition, Modelling and Management,
Proceedings of the 10th EKAW, Lecture Notes in Al, vol.1319, Springer, Berlin, 1997, pp. 65-80.

[18] A. Dardenne, A. van Lamsweerde, S. Fickas, Goal-directed requirements acquisition, Science in Computer
Programming 20 (1993) 3-50.

[19] R. Darimont, A. van Lamsweerde, Formal refinement patterns for goal-driven requirements elaboration, Proceed-
ings of the Fourth ACM Symposium on the Foundation of Software Engineering (FSE4) (1996) 179-190.

[20] E. Dubois, P. Du Bois, J.M. Zeippen, A formal requirements engineering method for real-time, concurrent, and
distributed systems, in: Proceedings of the Real-Time Systems Conference, RTS’95, 1995.

[21] M. Fisher, Representing and executing agent-based systems, in: M. Wooldridge, N. Jennings (Eds.), Intelligent
Agents — Proceedings of the International Workshop on Agent Theories, Architectures, and Languages, ATAL’94,
Lecture Notes in Artificial Intelligence, vol. 890, Springer, Berlin, 1995.

F.M.T. Brazier et al. | Data & Knowledge Engineering 41 (2002) 1-27 27

[22] E.E. Gamma, R. Helm, R. Johnson, J. Vlissides, Desing Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley/Longman, Reading, MA/New York, 1994.

[23] D.E. Herlea, C.M. Jonker, J. Treur, N.J.E. Wijngaards, Specification of behavioural requirements within
compositional multi-agent system design, in: F.J. Garijo, M. Boman (Eds.), Multi-Agent System Engineering,
Proceedings of the 9th European Workshop on Modelling Autonomous Agents in a Multi-Agent World,
MAAMAW’99, Lecture Notes in Al, vol. 1647, Springer, Berlin, 1999, pp. 8-27.

[24] J. Hooman, Compositional verification of a distributed real-time arbitration protocol, Real-Time Systems 6 (1994)
173-206.

[25] J. Hopkins, Component primer, Communications of the ACM 43 (1) (2000) 27-30.

[26] N.R. Jennings, Controlling cooperative problem solving in industrial multi-agent systems using joint intentions,
Artificial Intelligence Journal 74 (2) (1995).

[27] N.R. Jennings, M. Wooldridge, Applications of intelligent agents, in: N.R. Jennings, M. Wooldridge (Eds.), Agent
Technology: Foundations, Applications, and Markets, Springer, Berlin, 1998, pp. 3-28.

[28] C.M. Jonker, J. Treur, Compositional verification of multi-agent systems: a formal analysis of pro-activeness and
reactiveness, in: W.P. de Roever, H. Langmaack, A. Pnueli (Eds.), Proceedings of the International Workshop on
Compositionality, COMPOS’97, Lecture Notes in Computer Science, vol. 1536, Springer, Berlin, 1998, pp. 350-
380, Extended version to appear in: International Journal of Cooperative Information Systems, 2002.

[29] E.A. Kendall, P.V. Murali Krisna, C.V. Pathak, C.B. Suresh, in: Proceedings of the Second Annual Conference on
Autonomous Agents, Agents’98, ACM press, New York, 1998.

[30] D. Kinny, M.P. Georgeff, A.S. Rao, A methodology and technique for systems of BDI agents, in: W. van der
Velde, J.W. Perram (Eds.), Agents Breaking Away, Proceedings of the 7th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World, MAAMAW’96, Lecture Notes in Al, vol. 1038, Springer, Berlin,
1996, pp. 56-71.

[31] G. Kontonya, I. Sommerville, Requirements Engineering: Processes and Techniques, John Wiley and Sons, New
York, 1998.

[32] K. Lano, J. Bicarregui, T. Maibaum, J. Fiadeiro, Composition of reactive system components, in: Proceedings of
the Workshop on Foundations of Component-Based Systems (FoCBS ’97), Zurich, 1997.

[33] M. Luck, M. d’Inverno, A formal framework for agency and autonomy, in: V. Lesser (Ed.), Proceedings of the
First International Conference on Multi-Agent Systems, ICMAS’95, AAAI Press, 1995, pp. 254-260.

[34] D.L. Martin, A.J. Cheyer, D.B. Moran, The open agent architecture: a framework for building distributed
software systems, Applied Artificial Intelligence 13 (1999) 91-128.

[35] M. Mulder, J. Treur, M. Fisher, Agent modelling in MetateM and DESIRE, in: M.P. Singh, A.S. Rao, M.J.
Wooldridge (Eds.), Intelligent Agents IV, Proceedings of the Fourth International Workshop on Agent
Theories, Architectures and Languages, ATAL’97, Lecture Notes in Al, vol. 1365, Springer, Berlin, 1998,
pp. 193-207.

[36] H.S. Nwana, D.T. Ndumu, L.C. Lee, J. Collis, ZEUS: a tool-kit and approach for building distributed multi-agent
systems, in: Proceedings of the Third International Conference on Autonomous Agents *99, 1999, pp. 360-361.

[37] A.S. Rao, M.P. Georgeff, Modeling rational agents within a BDI architecture, in: R. Fikes, E. Sandewall (Eds.),
Proceedings of the Second Conference on Knowledge Representation and Reasoning, Morgan Kaufman,
Los Altos, CA, 1991, pp. 473-484.

[38] M.D. Rice, S.B. Seidman, Architectural issues in component-based software engineering, in: Proceedings of the
Workshop on Foundations of Component-Based Systems (FoCBS ’97), Zurich, 1997.

[39] J. Rumbaugh, M. Blaha, W. Pelerlani, F. Eddy, W. Lorensen, Object-Oriented Modelling and Design, Prentice-
Hall, Eaglewoods Clifs, NJ, 1991.

[40] N. Skarmeas, K. Clark, Component-based agent construction, Department of Computer Science, Imperial College,
University of London, 1999.

[41] M. Sparling, Lessons learned through six years of component-based development, Communications of the ACM
43 (10) (2000) 47-53.

[42] M. Wooldridge, N.R. Jennings, Agent theories, architectures, and languages: a survey, in: M. Wooldridge, N.R.
Jennings (Eds.), Intelligent Agents, Proceedings of the First International Workshop on Agent Theories,
Architectures and Languages, ATAL’94, Lecture Notes in Al, vol. 890, Springer, Berlin, 1995, pp. 1-39.

